
SYNTHESIS METHOD

ui ,j
n+1 = 1+ t

2[] 1 ui+1,j
n + ui 1,j

n + ui ,j+1
n + ui ,j 1

n 4ui ,j
n[]

+2ui ,j
n 1+ t

2[]ui ,j
n 1

 (1)

REFERENCES

A. Adib: “Study Notes on Numerical Solutions of the Wave Equation with the Finite Difference
Method,” arXiv:physics/0009068v2 [physics.comp-ph]. 4 October 2000. Downloaded from
http://arxiv.org/abs/physics/0009068v2 on April 15, 2010.

[1]

S. Bilbao: “A finite difference scheme for plate synthesis,” Proceedings of the International
Computer Music Conference, pp. 119-122, 2005.

[2]

B. Land: “Finite difference drum/chime," Downloaded 4/15/2010 from http://instruct1.cit.
cornell.edu/courses/ece576/LABS/f2009/lab4.html.

[3]

N. P. Lago, F. Kon: “The Quest for Low Latency,” Proceedings of the International Computer
Music Conference, pp. 33-36, 2004.

[4]

Nvidia CUDA Programming Guide, version 2.3.1. 8/26/2009. Downloaded 4/21/2010 from
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/Nvidia_CUDA_
Programming_Guide_2.3.pdf.

[6]

E. Motuk, R. Woods, S. Bilbao, J. McAllister: "Design Methodology for Real-Time FPGA-
Based Sound Synthesis," IEEE Transactions on Signal Processing, Vol. 55, No. 12,
pp. 5833 – 5845, 2007.

[5]

FUTURE WORK

Develop and optimize parallel algorithm to process arbitrarily large or
dense grids.

Write code in OpenCL to leverage heterogeneous computing
environments and embrace industry standards.

Package code into a modular, production-quality synthesis package.

●

●

●

Marc Sosnick & William Hsu, Department of Computer Science

REQUIREMENTS FOR REALTIME

To be considered useful as a realtime instrument, jitter and latency must be
within acceptable limits . This is known as responsiveness.

There can be no jitter
(Figure 3), which is usually
caused by buffer underruns.

Latency (Figure 4) should be
below 30 ms.

Figure 3. Maximum allowable jitter

time

none

Figure 4. Maximum allowable latency

LATENCY

time

< 30 ms

INTRODUCTION

We have been exploring the use of the general-purpose high-performance
computing capabilities of GPUs to perform sound synthesis using compute-
intensive physics-based models in realtime. Until now, realtime synthesis
using these models has not been practical using only CPUs.

Others have used these physics-based models generate audio1,2, but none
have executed in realtime.

Realtime sound synthesis using these physics-based models will allow the
creation of new audio synthesizer instruments.

We discuss our findings from our proof-of-concept work, intended to find
if it is possible to use these compute-intensive models to generate sound
in realtime using GPUs.

●

●

●

●

CONCLUSIONS

It is possible to generate realtime audio using GPUs and finite-difference
simulations.

Larger grids better leverage GPU computing power.

Choice of buffer and grid sizes is important to responsiveness.

Memory bandwidth is not a major consideration, especially with more
advanced graphics cards.

It should be possible to create a responsive, realtime synthesizer
instrument using compute-intensive physics-based models.

●

●
●
●

●

Figure 1. GPU vs CPU roles.

Get Buffer
From GPU

Send Buffer
To Play

CPU

repeat
until

buffer
full

GPU

Add Point
to Buffer

Calculate
Membrane

The CPU is used to coordinate buffers
between the GPU and the audio driver
(Figure 1). The audio sample buffer is
filled by the GPU, and when full passed
back to the CPU.

The GPU simulates a membrane in 3-
dimensions, using the vertical displace-
ment at a point on the membrane as the
value for the audio sample (Figure 2).
Equation (1) is repeated for each sample
generated.

To simulate the membrane, we use a finite-difference scheme, using a
truncated second-order Taylor expansion of the wave equation with
dissipation in 2-dimensions1,3,5:

Audio
Buffer

Sample
Point

Audio
Out

Simulated
Membrane

time = tn

0.0

0.3

-0.3
80

-0.3

0.0

0.3

time = tn+∆t

time =tn+2∆t time =tn+3∆t

Figure 2. How audio is generated from a simulated membrane.

EXPERIMENTAL SETUP

We implemented our software in C++ using Nvidia’s CUDA6 extension to
program the GPUs. We tested our software on three different systems
(Table 1), equipped with midrange graphics cards with GPU
computing capability.

Table 1. System configurations tested

EXPERIMENTAL RESULTS

We timed execution on the CPU and GPU with a variety of buffer sizes and
grid sizes (Figures 5, 6). Grid size is the resolution or size of the simulated
membrane.

We checked for jitter, also
using a variety of buffer and
grid sizes. This is a binary
test, where any buffer
underrun error was
considered jitter.

Table 2. Results of jitter testing

EXPERIMENTAL RESULTS (CONT’D)

4096−Sample Buffer with Varying Grid Size

0

500

1000

1500

m
illi

se
co

nd
s

15x15 18x18 21x21 15x15 18x18 21x21 15x15 18x18 21x21
GTX285 9400M 8800GT

Grid Size (points) by Graphics Card

GPU
CPU

21x21−Point Grid with Varying Buffer Size

0

500

1000

1500

m
illi

se
co

nd
s

8 512 4096 8 512 4096 8 512 4096
GTX285 9400M 8800GT

Buffer Size (bytes) by Graphics Card

GPU
CPU

Figure 5. Results of varying buffer size Figure 6. Results of varying grid size

CPU
@ Clock Rate

Intel Core 2 Quad
@ 2.5 GHz

Intel Core Duo
@ 1.86 GHz

Intel Quad Xeon
@ 3 GHz

GPU Cores
@ Clock Rate

240 cores
@ 1.48 GHz

16 cores
@ 0.80 GHz

112 cores
@ 1.5 GHz

Graphics Card GTX285 9400M 8800GT

Buffer
(samples)

Grid
(points)

≥ 4096 *
* ≥ 20 x 20

GPU Ø Ø
= 4096 *
≥ 1024 *

GPU ≥ 1024 *
CPU ≥ 1024 = 21 x 21
GPU ≥ 1024 = 21 x 21

8800GT

System Processor
Configuration

CPU

CPU

GTX285

9400M

4

