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FUTURE WORK

Develop and optimize parallel algorithm to process arbitrarily large or
dense grids.

Write code in OpenCL to leverage heterogeneous computing
environments and embrace industry standards.

Package code into a modular, production-quality synthesis package.
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REQUIREMENTS FOR REALTIME

To be considered useful as a realtime instrument, jitter and latency must be
within acceptable limits  .  This is known as responsiveness.

There can be no jitter
(Figure 3),  which is usually
caused by buffer underruns.  

Latency (Figure 4) should be 
below 30 ms.

Figure 3.  Maximum allowable jitter
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INTRODUCTION

We have been exploring the use of the general-purpose high-performance
computing capabilities of GPUs to perform sound synthesis using compute-
intensive physics-based models in realtime.  Until now, realtime synthesis
using these models has not been practical using only CPUs.

Others have used these physics-based models generate audio1,2, but none
have executed in realtime.

Realtime sound synthesis using these physics-based models will allow the 
creation of new audio synthesizer instruments.

We discuss our findings from our proof-of-concept work, intended to find
if it is possible to use these compute-intensive models to generate sound
in realtime using GPUs.
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CONCLUSIONS

It is possible to generate realtime audio using GPUs and finite-difference 
simulations.

Larger grids better leverage GPU computing power.

Choice of buffer and grid sizes is important to responsiveness.

Memory bandwidth is not a major consideration, especially with more 
advanced graphics cards.   

It should be possible to create a responsive, realtime synthesizer 
instrument using compute-intensive physics-based models.
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Figure 1.  GPU vs CPU roles.
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The CPU is used to coordinate buffers
between the GPU and the audio driver
(Figure 1).   The audio sample buffer is 
filled by the GPU, and when full passed
back to the CPU.

The GPU simulates a membrane in 3-
dimensions, using the vertical displace-
ment at a point on the membrane as the 
value for the audio sample (Figure 2).
Equation (1) is repeated for each sample
generated.

To simulate the membrane, we use a finite-difference scheme, using a 
truncated second-order Taylor expansion of the wave equation with 
dissipation in 2-dimensions1,3,5:
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Figure 2.  How audio is generated from a simulated membrane.

EXPERIMENTAL SETUP

We implemented our software in C++ using Nvidia’s CUDA6 extension to 
program the GPUs.  We tested our software on three different systems 
(Table 1), equipped with midrange graphics cards with GPU 
computing capability.

 

Table 1.  System configurations tested

EXPERIMENTAL RESULTS

We timed execution on the CPU and GPU with a variety of buffer sizes and
grid sizes (Figures 5, 6).  Grid size is the resolution or size of the simulated 
membrane.

We checked for jitter, also 
using a variety of buffer and 
grid sizes.  This is a binary
test, where any buffer 
underrun error was
considered jitter.

Table 2.  Results of jitter testing

EXPERIMENTAL RESULTS (CONT’D)
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Figure 5. Results of varying buffer size Figure 6. Results of varying grid size
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