
EFFICIENT FINITE DIFFERENCE-BASED SOUND
SYNTHESIS USING GPUS

Marc Sosnick William Hsu

San Francisco State University
Department of Computer Science

marc@marcsosnick.com whsu@sfsu.edu

ABSTRACT
Finite Difference (FD) methods can be the basis for phys-
ics-based music instrument models that generate realistic
audio output. However, such methods are compute-
intensive; large simulations cannot run in real time on
current CPUs. Many current systems now include power-
ful Graphics Processing Units (GPUs), which are a good
fit for FD methods. We describe an implementation of an
FD-based simulation of a two-dimensional membrane
that runs efficiently on mid-range GPUs; this will form a
framework for constructing a variety of realistic software
percussion instruments. For selected problem sizes, real-
time sound generation was demonstrated on a mid-range
test system, with speedups of up to 2.9 over pure CPU
execution.

1 INTRODUCTION
Powerful Graphics Processing Units (GPUs) are now
common in the standard graphics cards of most desktop
and laptop systems. While earlier GPUs are tailored for
graphics processing, recent GPUs from companies such
as Nvidia (http://www.nvidia.com) have adopted more
flexible architectures to support general purpose comput-
ing. Software support for non-graphics computing on
GPUs has also improved significantly in the last few
years, with environments such as Nvidia's Compute Uni-
fied Device Architecture (CUDA) [8] and OpenCL [9].
As a result, there has been much development of general
computing on GPUs; many of these projects are docu-
mented at http://gpgpu.org.

We have been exploring the use of GPUs for real-time
sound synthesis. An obvious question is whether GPU
memory bandwidth can efficiently support real-time
audio. Another question is whether the GPU architecture
can reliably operate under the additional constraints of a
real time application. Focus should be on compute-
intensive and parallelizable synthesis algorithms, to lev-
erage GPU functionality.

One scenario is to implement many copies of rela-
tively low-cost sound synthesis units on the GPU, mix the
outputs down to a few channels, and transfer the mix to
the CPU. This is useful for environments such as render-
ing auditory scenes with multiple sources. We have rather
different research goals; our target application involves

building a responsive instrument based on a compute-
intensive synthesis algorithm.

We have implemented a finite difference-based simu-
lation for a two-dimensional membrane (see [1, 7]),
which runs in real time on the GPU; the architecture of
the GPU is particularly well suited for this type of algo-
rithm. Finite difference methods are well known as an
effective approach for sound synthesis; see for example
[2, 7]. Such methods can be a framework for constructing
a number of complex software percussion instruments;
some simple sound samples can be found at
http://userwww.sfsu.edu/~whsu/FDGPU. Finite differ-
ence-based sound synthesis for large or fine-grained
membranes and plates is too expensive to run in real time
on CPUs. Previous studies on audio processing using
earlier generation GPUs and software have been mixed
(see for example [14, 4]). Our results show that it is now
feasible to implement such compute-intensive real-time
sound synthesis algorithms on GPUs. In general it should
be possible to realize many computationally expensive
physics-based synthesis models as real-time instruments
on portable systems.

Our paper is organized as follows. Section 2 overviews
related work on high-performance audio computing. In
Section 3, we describe the finite difference synthesis al-
gorithm we worked with, and our implementation using
CUDA. We present experimental results and measure-
ments in Section 4. Conclusions are drawn in Section 5.

2 RELATED WORK
The website http://gpgpu.org is a major clearinghouse for
information on general purpose computing on GPUs.
Relatively few audio-related projects are documented on
the site. [14] implemented seven audio DSP algorithms
on a GPU. [11] studied waveguide-based room acoustics
simulations using GPUs.

GPUs have been used in the real-time rendering of
complex auditory scenes with multiple sources. In [3],
the GPU is used primarily for computing particle colli-
sions to drive audio events. [15] uses the GPU for calcu-
lating modal synthesis-based audio for large numbers of
sounding objects. [13] proposed a method for efficient
filter implementation on GPUs, and applied it to synthe-
sis of large numbers of sound sources in virtual envi-
ronments.

Copyright: © 2010 Sosnick and Hsu. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source
are credited.

Faust [10] is a framework for parallelizing audio ap-
plications and plug-ins; it does not currently support
GPU computing.

Our target application is a real-time instrument based
on a compute-intensive synthesis algorithm, such as a
finite difference membrane model. Bilbao has studied
extensively the use of finite differencing for sound syn-
thesis; see for example [2]. Since large models based on
finite difference methods are too expensive for real-time
performance on CPUs, work has been done for example
on FPGA-based implementations [7]. Our approach lev-
erages GPUs that are already common on commodity
systems, and does not require custom hardware.

3 FINITE DIFFERENCE ALGORITHM
We simulate a membrane using the finite difference (FD)
method of approximation of the wave equation with dis-
sipation in two dimensions as derived by Adib [1]. A
square membrane is modeled with a horizontal x-y grid
of points. The continuous function u (x, y, t) is defined on
the spatial x and y, and time t; u is the vertical displace-
ment at the point (x, y) at time t. The wave equation with
dissipation is given as:

€

∂ 2u
∂x 2

+
∂ 2u
∂y 2

=
∂ 2u
∂t 2

+η
∂u
∂t

 (1)

where η is the viscosity coefficient. Expanding with the
truncated second-order Taylor expansion:

€

ui+1,j
n − 2ui ,j

n + ui−1,j
n

Δl 2
+
ui ,j+1
n − 2ui ,j

n + ui ,j−1
n

Δl 2

=
ui ,j
n+1 − 2ui ,j

n + ui ,j
n−1

Δt 2
+η

ui ,j
n+1 − ui ,j

n−1

2Δt

 (2)

where, since the grid is symmetric, ∆ l=∆x=∆y , and
x= i∆x, y=j∆y, and t=n∆ t [7]. Solving for

€

ui, j
n+1:

€

ui ,j
n+1 = 1+ ηΔt

2[]−1
ρ ui+1,j

n + ui−1,j
n + ui ,j+1

n + ui ,j−1
n − 4ui ,j

n[]
+2ui ,j

n − 1+ ηΔt
2[]ui ,jn−1

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪
 (3)

where, from [5]:

€

ρ = v ⋅ Δt
Δx

⎛

⎝
⎜

⎞

⎠
⎟
2
 (4)

such that v is velocity of the wave in the medium. For
our initial experiments, we treat η and ρ as constants, and
used known stable values from Land [5].

In a production system with a variable velocity pa-
rameter, it will important to test that the system satisfies
the so-called Courant condition [1]:

€

v ≤ Δx
Δt

 (5)

 to assure system stability.
We implemented u as three 2-D matrices of single-
precision (4-byte) floating point numbers so as to main-
tain compatibility with Nvidia devices of compute capa-

bility 1.2 or lower [8]. We use the leap-frog algorithm to
calculate the values at

€

ui ,j
n+1 given the values of

€

ui ,j
n−1 and

€

ui ,j
n [1]. Boundary conditions are maintained at each

iteration by testing the values of i and j and adjusting

€

ui ,j
n

appropriately. A scalar gain value is used to either clamp
the edge (boundary gain = 0) or allow motion dependent
on the adjacent internal grid point times the boundary
gain (boundary gain < 1) [5]. Corners are given no spe-
cial consideration. To obtain different sounds, the values
of n (grid size), η, ρ, and boundary gain are manipulated.
For example, values of η=2x10-4, ρ=0.5, n = 6, and a
boundary gain of 0.75 produces a bell-like tone; values of
η=2x10-4, ρ=0.5, n = 16, and a boundary gain of 0 pro-
duces a drum like tone. Further examples of this can be
found at http://userwww.sfsu.edu/~whsu/FDGPU.

To obtain audio output, the membrane must be excited
in some fashion, roughly analogous to striking or pluck-
ing the membrane. We use a simple Gaussian impulse to
initialize/excite the membrane.

€

ui ,j
n−1 is set to 0, and

€

ui ,j
n to

a Gaussian impulse, as suggested in [2, 5]. To obtain
audio output, a point on the membrane is chosen, and the
value for

€

ui ,j
n is sampled and scaled at each iteration. For

our experiment, the center point of the grid was chosen as
the output point.

We coded two implementations of (3), one serial and
one parallel. As is typical in real-time synthesis applica-
tions, we run the simulation for several time steps and
store the generated output samples in the audio output
buffer. When the audio output buffer is full, it is handed
off to the audio driver for playback. The serial implemen-
tation (Figure 1), is designed to run on the CPU as in [5,
7]. The outermost loop accumulates output samples in
the audio buffer. Then we loop over all the grid points to
calculate the elements of the

€

ui ,j
n+1 array. Finally, we up-

date the

€

ui ,j
n−1 and

€

ui ,j
n arrays, in preparation for the next

time-step. This serial implementation is clearly of O(n2) .

For t=0 to t=output buffer size
 For row = 1 to N
 For col = 1 to N
 Update

€

urow ,col
n+1

 If row, col is boundary
 Recalculate boundary point
 If row, col is sample point
 Copy

€

urow ,col
n+1 to output buffer

 End for
 End for
 For row = 1 to N
 For col = 1 to N

€

urow ,col
n−1 = urow ,col

n

€

urow ,col
n = urow ,col

n+1
 End for
 End for
End for
End

Figure 1. Serial implementation of finite difference
membrane simulation.

Our parallel implementation of the finite difference
simulation for the GPU (Figure 2) is written using
Nvidia’s Compute Unified Device Architecture (CUDA)
extension to C, which allows programmers to take advan-
tage of this architecture. Nvidia’s GPU hardware is a
SIMT (single instruction multiple threads) architecture
using scalable arrays of multithreaded streaming multi-
processors [8]. CUDA divides system hardware into host
and device, where the host is the system (PC desktop or
laptop) in which the Nvidia device (or GPU) resides, and
the device is the Nvidia GPU on which the parallel pro-
gram, or kernel, executes. The host system first prepares
the device and then hands off execution of the kernels to
the device. Each kernel is executed on the device in a
thread, and threads are combined into one, two, or three
dimensional thread blocks. In a kernel, a thread can ob-
tain its unique x, y, z position in the thread block, which
is what we use to determine the thread’s position when
calculating u. All threads in a thread block execute si-
multaneously, but can be synchronized [8].

Memory between the host and device can be inde-
pendent or integrated with system memory, but in either
case are addressed separately on the host and device. On
some systems page-locked host memory (called pinned
memory) can be mapped to the device [8]. Pinned mem-
ory simplifies and reduces the overhead of asynchro-
nously transferring results from the device to the host.

In our parallel implementation, each grid point update
is mapped to a single thread. A thread determines its
position in the grid by finding its 2-D location in the
thread block [8]. At each time-step, each thread calcu-
lates one update of the

€

ui ,j
n+1 array. As with the serial im-

plementation, each thread checks to see if it is at a
boundary; if so, it adjusts the current point. The thread
that corresponds to the output point also collects data
over multiple time-steps, and updates the output buffer.
In order to maintain coherence over time, the threads are
synchronized at the points illustrated in Figure 2.

Calc. row and col from thread index
For t=0 to t=buffer size
 Update

€

urow ,col
n+1

 If row, col is boundary
 Recalculate boundary point
 Synchronize threads
 If row, col is sample point
 Save

€

urow,col
n+1 in output buffer

 Synchronize threads

€

urow ,col
n−1 = urow ,col

n

€

urow ,col
n = urow ,col

n+1
 Synchronize threads
End for
End

Figure 2. Parallel implementation of finite difference
membrane simulation.

To execute each thread block, the host hands off exe-
cution to the device. The simulation runs for several time-
steps, and the output buffer is filled with the computation
results, after which execution on the device stops. If

pinned memory is not supported, the host copies the out-
put buffer to the audio output buffer; otherwise the host
passes a pointer to the audio driver using the pinned
memory as the audio output buffer. The execution of the
thread block is repeated for the duration of the output
sound.

We were especially interested in two boundary cases.
First, if the output buffer size is small, there will be more
calls to execute the grid calculation, creating significant
setup overhead. Second, if the grid size is too large, the
time that it takes to calculate a grid may push latency past
acceptable realtime parameters.

4 EXPERIMENTAL METHOD
4.1 System Configurations

We tested our code on three systems. System 1 was a PC
with a 2.5 GHz Intel Core 2 Quad running Ubuntu 9.10
with a 2.6.31-20-generic kernel and an Nvidia GeForce
GTX285. System 2 was a Mac Book Air with a 1.86 GHz
Intel Core 2 Duo and 2 GB of 1067 MHz DDR 3 RAM
running OS 10.5.8 and an integrated Nvidia GeForce
9400M. System 3 was a MacPro with dual 3 GHz Intel
Quad-Core Xeon and 5 GB of 667 MHz DDR2 RAM
running OS 10.5.8 and an Nvidia GeForce 8800 GT.

These systems represent a good cross-section of
available midrange cards. The GTX285 is the most pow-
erful of the three, with 240 CUDA cores running at a
Graphics clock of 1.48 GHz. The 8800 GT has 112
CUDA cores running at a Graphics clock of 1.5 GHz.
The 9400M is a low-end GPU used mostly in systems
with restricted power consumption; it has 16 CUDA
cores running at a Graphics clock of 0.80 GHz.

The 9400M and GTX285 both support pinned mem-
ory, whereas the 8800GT does not. The 9400M is inte-
grated into the motherboard, whereas the 8800GT and
GTX285 both are PCI cards. The 9400M’s memory is
integrated into system memory, while the 8800GT and
GTX285 memory is independent of system memory.

4.2 Software Implementation Details

Our parallel software implementation of the finite differ-
ence membrane simulation is written in C++ using Nvidia
CUDA (The package is available for download at
http://userwww.sfsu.edu/~whsu/FDGPU) We use Por-
tAudio (http://www.portaudio.com) in blocking I/O mode
as our cross-platform audio interface.

For both serial and parallel versions, the main loop of
the simulation runs for a number of cycles and fills the
audio output buffer. Data in the output buffer is then
passed on to PortAudio for real-time output or to be
stored in a file. On systems with pinned memory, sam-
ples generated and stored in the audio output buffer are
accessed directly through pinned memory. On systems
without pinned memory, data in the output buffer is cop-
ied from the device to the host. The PortAudio driver
blocks until it has received data [12], thus allowing us to
clearly test timing by seeing obvious buffer underrun
conditions.

5 EXPERIMENTAL RESULTS
On the three systems we outlined above, we tested the
audio output quality for real-time performance, for grid
sizes from 15 x 15 to 21 x 21, and audio buffer sizes from
8 to 4096. We discovered that, as expected, the larger the
output buffer or the larger the grid size, the better the
GPU performed, relative to the CPU on the same system.
The predominant problem was jitter [6] caused by buffer
underruns. On the GTX285 system, with the parallel
implementation on the GPU, we experienced clean output
across all grid sizes and audio buffer sizes. However,
with the serial CPU code, there was jitter when the grid
size was greater than 20 or the buffer size was at 4096
samples or larger. On the 8800GT system, we experi-
enced jitter for both parallel and serial versions, when the
buffer size was less than 1024 samples and the grid size
at 21 x 21. On the 9400M system, we experienced jitter
with both parallel and serial versions, when the buffer
size was less than 1024 samples, or the grid size was
greater than 17 x 17. On all systems, responsiveness was
difficult to evaluate objectively; to fill a buffer of 1024
samples at 44100 Hz, would require approximately 23
ms, which [6] identifies as the threshold for perception of
latency. It appears that our parallel finite difference simu-
lation, running on the GTX285 system, can be the basis
for a responsive software instrument.

While it is difficult to compare performance on the
three systems with different CPUs and GPUs, we set up
some simple timing experiments to estimate the effi-
ciency of our parallel implementation. We simulated
playing a sample for one second, and repeated this five
times. We used the built-in CUDA timers to measure the
amount of time it took to calculate the samples and trans-
fer the samples from the device to the system, using
pinned memory on systems where that is available, and
asynchronous transfers for the system without pinned
memory. We made measurements for several audio out-
put buffer sizes, and several grid sizes.

System

Buffer
Size

(Samples)

GPU
Time
(ms)

Memory
Transfer

(ms)

GPU
Total
(ms)

CPU
Time
(ms)

8 1626 0 1626 3060
512 1062 0 1062 3032 GTX285

4096 1067 0 1067 3102
8 7251 0 7251 4052

512 5674 0 5674 4088 9400M
4096 2842 0 2842 4133

8 2863 705 3568 2562
512 2095 12 2106 2518 8800GT

4096 2110 2 2112 2539

Table 1. Results for fixed 21 x 21 grid and varying out-
put buffer size.

The results of the tests run on our three test systems,
with a fixed grid size of 21 x 21 and varying buffer sizes,
are summarized in Table 1. Buffer Size is the size of the
output buffer in samples. GPU Time is the total execution
time in milliseconds of the kernels on the GPU. Memory

Transfer is the total time in milliseconds to transfer the
output buffer from the device to the host; a memory
transfer value of 0 indicates that the device supported
pinned memory. CPU Time is the total execution time in
milliseconds of the serial implementation on the CPU.
All timings represent a total time over 5 runs of 1- second
output each (i.e. total of 220500 samples).

Figure 3. Execution speed with a constant grid size of 21
x 21 points, and varying output buffer sizes.

As can be seen in Figure 3, performance on the CPU
remains almost constant for all buffer sizes. As the out-
put buffer size increases, generating the same number of
output samples requires fewer kernel calls and memory
transfers on the GPU; thus the overhead decreases. For
the GTX285 system, the performance of the parallel ver-
sion increased significantly when buffer size increased
from 8 to 512, and stayed about constant for larger buffer
sizes. The parallel implementation ran faster than the
serial implementation, with speedups of 1.2 to 2.9. The
9400M system had the lowest performance of the three.
The performance of the parallel implementation increased
steadily with larger buffer sizes. For the 8800GT system
(no pinned memory), as the buffer size increased, the

System

Grid
Size

(Points)

GPU
Time
(ms)

Memory
Transfer

(ms)

GPU
Total
(ms)

CPU
Time
(ms)

15 x 15 924 0 924 1577
18 x 18 984 0 984 2224 GTX285
21 x 21 1067 0 1067 3102
15 x 15 2222 0 2222 1984
18 x 18 2957 0 2957 3040 9400M
21 x 21 2842 0 2842 4133

 15 x 15 1411 2 1413 1266
18 x 18 1743 3 1746 1843 8800GT
21 x 21 2110 2 2112 2539

Table 2. Results for a fixed buffer size of 4096 samples,
and varying grid size.

overhead for memory transfers decreased as a percentage
of total execution time. The parallel code was faster than
the serial code only with a buffer size of 512 or greater.

Table 2 summarizes timing estimates with a fixed
buffer size of 4096 samples, but with varying grid sizes
of 15 x 15, 18 x 18, and 21 x 21. (We were unable to
work with larger grid sizes because of GPU memory
limitations for our current implementation.)

 Figure 4. Execution speed with a constant buffer size
4096-samples, and varying grid sizes. For the GTX285,
k=0.755; for the 9400M k=1.0; for the 8800GT k=0.629.

As with the previous test, the parallel implementation
was faster than the serial on the GTX285 system for all
tested grid sizes; it can be seen Figure 4 that timings for
the CPU show an approximate O(n2) increase with grid
size, while GPU timings increase significantly more
slowly. With all grid sizes, speedup improved with larger
grid sizes. For the 9400M system and 8800GT system,
the parallel version was faster for grid sizes 18 and 21,
but the serial version was faster for a grid size of 15.

6 CONCLUSIONS AND FUTURE WORK
Our goal for this project was to explore the ability of cur-
rent mid-range GPU cards to support real-time compute-
intensive physics-based synthesis algorithms. We have
shown that it is possible to use GPUs to generate real-
time audio based on finite difference plate/membrane
simulations, but that correct choice of output buffer size
and simulation grid size are important. Our straightfor-
ward implementation of a parallel finite difference algo-
rithm runs efficiently on our first test system with a
GTX285; our less powerful test systems will support
adequate performance with selected buffer and simulation
grid sizes.

From the results with the 8800GT system, we have
shown that memory bandwidth is not a major issue, at
least for problems similar to our finite difference code.
Newer models of GPU cards that support pinned memory
largely avoid the overhead of copying results between the
GPU and the host CPU. Larger simulation grid sizes can
leverage the parallelism of multiple GPU cores, if the
data sizes do not exceed the available GPU memory size.

The output buffer size can be increased to reduce kernel
call and memory transfer overhead, but at the cost of re-
sponsiveness.

Future work will focus on creating a modular produc-
tion-quality synthesis package using the GPU and finite
difference methods, for modeling a variety of percussion
instruments. Some limitations of the current implementa-
tion must be addressed. Our current version supports
only relatively small grid sizes. We are working on dis-
tributing the parallel kernel across multiple thread blocks,
and using texture memory, to allow for larger or denser
grids. Our code is written in the proprietary CUDA ex-
tension. We are planning on rewriting the GPU software
in the industry-standard OpenCL language [9] and testing
it across heterogeneous compute platforms.

7 REFERENCES
[1] A. Adib: “Study Notes on Numerical Solutions of

the Wave Equation with the Finite Difference
Method,” arXiv:physics/0009068v2 [physics.comp-
ph]. 4 October 2000. Downloaded from
http://arxiv.org/abs/physics/0009068v2 on April 15,
2010.

[2] S. Bilbao: “A finite difference scheme for plate syn-
thesis,” Proceedings of the International Computer
Music Conference, pp. 119-122, 2005.

[3] K. van den Doel, D. Knott, D. Pai: "Interactive
Simulation of Complex Audio-Visual Scenes,"
Presence: Teleoperators and Virtual Environments,
Vol. 13, No. 1, pp. 99-111, 2004.

[4] E. Gallo, N. Tsingos: “Efficient 3D Audio Process-
ing on the GPU,” Proceedings of the ACM Work-
shop on General Purpose Computing on Graphics
Processors, August 2004.

[5] B. Land: “Finite difference drum/chime," From
http://instruct1.cit.cornell.edu/courses/ece576/LABS
/f2009/lab4.html, 4/15/2010.

[6] N. P. Lago, F. Kon: “The Quest for Low Latency,”
Proceedings of the International Computer Music
Conference, pp. 33-36, 2004.

[7] E. Motuk, R. Woods, S. Bilbao, J. McAllister: "De-
sign Methodology for Real-Time FPGA-Based
Sound Synthesis," IEEE Transactions on Signal
Processing, Vol. 55, No. 12, pp. 5833 – 5845, 2007.

[8] Nvidia CUDA Programming Guide, version 2.3.1.
8/26/2009. Downloaded 4/21/2010 from
http://developer.download.nvidia.com/compute/cuda
/2_3/toolkit/docs/Nvidia_CUDA_Programming_Gui
de_2.3.pdf.

[9] Nvidia OpenCL Programming Guide, version 2.3.
8/27/2009. Downloaded 4/21/2010 from
http://www.nvidia.com/content/cudazone/download/
OpenCL/Nvidia_OpenCL_ProgrammingGuide.pdf

[10] Y. Orlarey, D. Fober, S. Letz: "Parallelization of
Audio Applications with Faust," Proceedings of the
SMC 2009 - 6th Sound and Music Computing Con-
ference, pp. 23-25, 2009.

[11] N. Rober, U. Kaminski, M. Masuch: "Ray Acous-
tics using Computer Graphics Technology," Pro-
ceedings of DAFx, 2007.

[12] B. Roche: Blocking Read/Write Functions. From
http://www.portaudio.com/trac/wiki/TutorialDir/Blo
ckingReadWrite, 4/21/2010.

[13] F. Trebien, M. Oliveira: “Realistic real-time sound
re-synthesis and processing for interactive virtual
worlds,” The Visual Computer, Vol. 25, No. 5-7,
2009.

[14] S. Whalen: "Audio and the Graphics Processing
Unit," Technical Report, Downloaded 4/21/2010
from http://www.node99.org/papers/gpuaudio.pdf.

[15] Q. Zhang, L. Ye, Z. Pan, "Physically-Based Sound
Synthesis on GPUs," Entertainment Computing -
ICEC 2005, Lecture Notes in Computer Science,
Vol. 3711/2005.

	1 INTRODUCTION
	2 RELATED WORK
	3 FINITE DIFFERENCE ALGORITHM
	4 EXPERIMENTAL METHOD
	5 EXPERIMENTAL RESULTS
	6 CONCLUSIONS AND FUTURE WORK
	7 REFERENCES

