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ABSTRACT 
Finite Difference (FD) methods can be the basis for phys-
ics-based music instrument models that generate realistic 
audio output. However, such methods are compute-
intensive; large simulations cannot run in real time on 
current CPUs. Many current systems now include power-
ful Graphics Processing Units (GPUs), which are a good 
fit for FD methods. We describe an implementation of an 
FD-based simulation of a two-dimensional membrane 
that runs efficiently on mid-range GPUs; this will form a 
framework for constructing a variety of realistic software 
percussion instruments. For selected problem sizes, real-
time sound generation was demonstrated on a mid-range 
test system, with speedups of up to 2.9 over pure CPU 
execution.  

1 INTRODUCTION 
Powerful Graphics Processing Units (GPUs) are now 
common in the standard graphics cards of most desktop 
and laptop systems. While earlier GPUs are tailored for 
graphics processing, recent GPUs from companies such 
as Nvidia (http://www.nvidia.com) have adopted more 
flexible architectures to support general purpose comput-
ing. Software support for non-graphics computing on 
GPUs has also improved significantly in the last few 
years, with environments such as Nvidia's Compute Uni-
fied Device Architecture (CUDA) [8] and OpenCL [9]. 
As a result, there has been much development of general 
computing on GPUs; many of these projects are docu-
mented at http://gpgpu.org. 

We have been exploring the use of GPUs for real-time 
sound synthesis. An obvious question is whether GPU 
memory bandwidth can efficiently support real-time 
audio. Another question is whether the GPU architecture 
can reliably operate under the additional constraints of a 
real time application.  Focus should be on compute-
intensive and parallelizable synthesis algorithms, to lev-
erage GPU functionality. 

One scenario is to implement many copies of rela-
tively low-cost sound synthesis units on the GPU, mix the 
outputs down to a few channels, and transfer the mix to 
the CPU. This is useful for environments such as render-
ing auditory scenes with multiple sources. We have rather 
different research goals; our target application involves 

building a responsive instrument based on a compute-
intensive synthesis algorithm.  

We have implemented a finite difference-based simu-
lation for a two-dimensional membrane (see [1, 7]), 
which runs in real time on the GPU; the architecture of 
the GPU is particularly well suited for this type of algo-
rithm.  Finite difference methods are well known as an 
effective approach for sound synthesis; see for example 
[2, 7]. Such methods can be a framework for constructing 
a number of complex software percussion instruments;  
some simple sound samples can be found at 
http://userwww.sfsu.edu/~whsu/FDGPU. Finite differ-
ence-based sound synthesis for large or fine-grained 
membranes and plates is too expensive to run in real time 
on CPUs. Previous studies on audio processing using 
earlier generation GPUs and software have been mixed 
(see for example [14, 4]). Our results show that it is now 
feasible to implement such compute-intensive real-time 
sound synthesis algorithms on GPUs. In general it should 
be possible to realize many computationally expensive 
physics-based synthesis models as real-time instruments 
on portable systems. 

Our paper is organized as follows. Section 2 overviews 
related work on high-performance audio computing. In 
Section 3, we describe the finite difference synthesis al-
gorithm we worked with, and our implementation using 
CUDA. We present experimental results and measure-
ments in Section 4. Conclusions are drawn in Section 5. 

2 RELATED WORK 
The website http://gpgpu.org is a major clearinghouse for 
information on general purpose computing on GPUs. 
Relatively few audio-related projects are documented on 
the site. [14] implemented seven audio DSP algorithms 
on a GPU. [11] studied waveguide-based room acoustics 
simulations using GPUs. 

GPUs have been used in the real-time rendering of 
complex auditory scenes with multiple sources. In [3], 
the GPU is used primarily for computing particle colli-
sions to drive audio events. [15] uses the GPU for calcu-
lating modal synthesis-based audio for large numbers of 
sounding objects. [13] proposed a method for efficient 
filter implementation on GPUs, and applied it to synthe-
sis of large numbers of sound sources in virtual envi-
ronments. 
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Faust [10] is a framework for parallelizing audio ap-
plications and plug-ins; it does not currently support 
GPU computing. 

Our target application is a real-time instrument based 
on a compute-intensive synthesis algorithm, such as a 
finite difference membrane model. Bilbao has studied 
extensively the use of finite differencing for sound syn-
thesis; see for example [2]. Since large models based on 
finite difference methods are too expensive for real-time 
performance on CPUs, work has been done for example 
on FPGA-based implementations [7]. Our approach lev-
erages GPUs that are already common on commodity 
systems, and does not require custom hardware. 

3 FINITE DIFFERENCE ALGORITHM 
We simulate a membrane using the finite difference (FD) 
method of approximation of the wave equation with dis-
sipation in two dimensions as derived by Adib [1]. A 
square membrane is modeled with a horizontal x-y grid 
of points. The continuous function u (x, y, t) is defined on 
the spatial x and y, and time t; u is the vertical displace-
ment at the point (x, y) at time t.  The wave equation with 
dissipation is given as: 
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where η is the viscosity coefficient. Expanding with the 
truncated second-order Taylor expansion: 
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where, since the grid is symmetric, ∆ l=∆x=∆y , and 
x= i∆x,  y=j∆y, and t=n∆ t  [7]. Solving for 
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where, from [5]: 
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such that v is velocity of the wave in the medium.  For 
our initial experiments, we treat η and ρ as constants, and 
used known stable values from Land [5].  

In a production system with a variable velocity pa-
rameter, it will important to test that the system satisfies 
the so-called Courant condition [1]: 
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v ≤ Δx
Δt

 (5) 

 to assure system stability. 
We implemented u as three 2-D matrices of single-
precision (4-byte) floating point numbers so as to main-
tain compatibility with Nvidia devices of compute capa-

bility 1.2 or lower [8].  We use the leap-frog algorithm to 
calculate the values at 
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ui ,j
n+1 given the values of 
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ui ,j
n−1  and 
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ui ,j
n  [1].  Boundary conditions are maintained at each 

iteration by testing the values of i and j and adjusting 

€ 

ui ,j
n  

appropriately.  A scalar gain value is used to either clamp 
the edge (boundary gain = 0) or allow motion dependent 
on the adjacent internal grid point times the boundary 
gain (boundary gain < 1) [5].  Corners are given no spe-
cial consideration.  To obtain different sounds, the values 
of n (grid size), η, ρ, and boundary gain are manipulated. 
For example, values of η=2x10-4,  ρ=0.5, n = 6, and a 
boundary gain of 0.75 produces a bell-like tone; values of 
η=2x10-4,  ρ=0.5, n = 16, and a boundary gain of 0 pro-
duces a drum like tone.  Further examples of this can be 
found at http://userwww.sfsu.edu/~whsu/FDGPU.  

To obtain audio output, the membrane must be excited 
in some fashion, roughly analogous to striking or pluck-
ing the membrane.  We use a simple Gaussian impulse to 
initialize/excite the membrane. 
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ui ,j
n−1  is set to 0, and 
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ui ,j
n  to 

a Gaussian impulse, as suggested in [2, 5]. To obtain 
audio output, a point on the membrane is chosen, and the 
value for 

€ 

ui ,j
n is sampled and scaled at each iteration.  For 

our experiment, the center point of the grid was chosen as 
the output point. 

We coded two implementations of (3), one serial and 
one parallel. As is typical in real-time synthesis applica-
tions, we run the simulation for several time steps and 
store the generated output samples in the audio output 
buffer. When the audio output buffer is full, it is handed 
off to the audio driver for playback. The serial implemen-
tation (Figure 1), is designed to run on the CPU as in [5, 
7].  The outermost loop accumulates output samples in 
the audio buffer. Then we loop over all the grid points to 
calculate the elements of the 
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n+1 array.  Finally, we up-

date the 
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ui ,j
n−1  and 
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n  arrays, in preparation for the next 

time-step.  This serial implementation is clearly of O(n2) . 
 

For t=0 to t=output buffer size 
  For row = 1 to N 
    For col = 1 to N 
      Update 
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      If row, col is boundary 
        Recalculate boundary point 
      If row, col is sample point 
        Copy 
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urow ,col
n+1  to output buffer 

    End for 
  End for 
  For row = 1 to N 
    For col = 1 to N 
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n  
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urow ,col
n = urow ,col

n+1  
    End for 
  End for 
End for 
End 

Figure 1.  Serial implementation of finite difference 
membrane simulation. 



Our parallel implementation of the finite difference 
simulation for the GPU (Figure 2) is written using 
Nvidia’s Compute Unified Device Architecture (CUDA) 
extension to C, which allows programmers to take advan-
tage of this architecture. Nvidia’s GPU hardware is a 
SIMT (single instruction multiple threads) architecture 
using scalable arrays of multithreaded streaming multi-
processors [8]. CUDA divides system hardware into host 
and device, where the host is the system (PC desktop or 
laptop) in which the Nvidia device (or GPU) resides, and 
the device is the Nvidia GPU on which the parallel pro-
gram, or kernel, executes.  The host system first prepares 
the device and then hands off execution of the kernels to 
the device.  Each kernel is executed on the device in a 
thread, and threads are combined into one, two, or three 
dimensional thread blocks.  In a kernel, a thread can ob-
tain its unique x, y, z position in the thread block, which 
is what we use to determine the thread’s position when 
calculating u.  All threads in a thread block execute si-
multaneously, but can be synchronized [8]. 

Memory between the host and device can be inde-
pendent or integrated with system memory, but in either 
case are addressed separately on the host and device.  On 
some systems page-locked host memory (called pinned 
memory) can be mapped to the device [8].  Pinned mem-
ory simplifies and reduces the overhead of asynchro-
nously transferring results from the device to the host.  

In our parallel implementation, each grid point update 
is mapped to a single thread.  A thread determines its 
position in the grid by finding its 2-D location in the 
thread block [8].  At each time-step, each thread calcu-
lates one update of the 
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ui ,j
n+1 array. As with the serial im-

plementation, each thread checks to see if it is at a 
boundary; if so, it adjusts the current point. The thread 
that corresponds to the output point also collects data 
over multiple time-steps, and updates the output buffer.  
In order to maintain coherence over time, the threads are 
synchronized at the points illustrated in Figure 2.  
 
Calc. row and col from thread index 
For t=0 to t=buffer size 
  Update 
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  If row, col is boundary 
    Recalculate boundary point 
  Synchronize threads 
  If row, col is sample point 
    Save 
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  Synchronize threads 
End for 
End 

Figure 2.  Parallel implementation of finite difference 
membrane simulation. 

To execute each thread block, the host hands off exe-
cution to the device. The simulation runs for several time-
steps, and the output buffer is filled with the computation 
results, after which execution on the device stops. If  

pinned memory is not supported, the host copies the out-
put buffer to the audio output buffer; otherwise the host 
passes a pointer to the audio driver using the pinned 
memory as the audio output buffer.  The execution of the 
thread block is repeated for the duration of the output 
sound. 

We were especially interested in two boundary cases.  
First, if the output buffer size is small, there will be more 
calls to execute the grid calculation, creating significant 
setup overhead.  Second, if the grid size is too large, the 
time that it takes to calculate a grid may push latency past 
acceptable realtime parameters. 

4 EXPERIMENTAL METHOD 
4.1 System Configurations 

We tested our code on three systems. System 1 was a PC 
with a 2.5 GHz Intel Core 2 Quad running Ubuntu 9.10 
with a 2.6.31-20-generic kernel and an Nvidia GeForce 
GTX285. System 2 was a Mac Book Air with a 1.86 GHz 
Intel Core 2 Duo and 2 GB of 1067 MHz DDR 3 RAM 
running OS 10.5.8 and an integrated Nvidia GeForce 
9400M.  System 3 was a MacPro with dual 3 GHz Intel 
Quad-Core Xeon and 5 GB of 667 MHz DDR2 RAM 
running OS 10.5.8 and an Nvidia GeForce 8800 GT.   

These systems represent a good cross-section of 
available midrange cards.  The GTX285 is the most pow-
erful of the three, with 240 CUDA cores running at a 
Graphics clock of 1.48 GHz. The 8800 GT has 112 
CUDA cores running at a Graphics clock of 1.5 GHz. 
The 9400M is a low-end GPU used mostly in systems 
with restricted power consumption; it has 16 CUDA 
cores running at a Graphics clock of 0.80 GHz.  

The 9400M and GTX285 both support pinned mem-
ory, whereas the 8800GT does not.  The 9400M is inte-
grated into the motherboard, whereas the 8800GT and 
GTX285 both are PCI cards.  The 9400M’s memory is 
integrated into system memory, while the 8800GT and 
GTX285 memory is independent of system memory. 

4.2 Software Implementation Details 

Our parallel software implementation of the finite differ-
ence membrane simulation is written in C++ using Nvidia 
CUDA (The package is available for download at 
http://userwww.sfsu.edu/~whsu/FDGPU) We use Por-
tAudio (http://www.portaudio.com) in blocking I/O mode 
as our cross-platform audio interface. 

For both serial and parallel versions, the main loop of 
the simulation runs for a number of cycles and fills the 
audio output buffer. Data in the output buffer is then 
passed on to PortAudio for real-time output or to be 
stored in a file.  On systems with pinned memory, sam-
ples generated and stored in the audio output buffer are 
accessed directly through pinned memory. On systems 
without pinned memory, data in the output buffer is cop-
ied from the device to the host.  The PortAudio driver 
blocks until it has received data [12], thus allowing us to 
clearly test timing by seeing obvious buffer underrun 
conditions. 



5 EXPERIMENTAL RESULTS 
On the three systems we outlined above, we tested the 
audio output quality for real-time performance, for grid 
sizes from 15 x 15 to 21 x 21, and audio buffer sizes from 
8 to 4096. We discovered that, as expected, the larger the 
output buffer or the larger the grid size, the better the 
GPU performed, relative to the CPU on the same system.  
The predominant problem was jitter [6] caused by buffer 
underruns.  On the GTX285 system, with the parallel 
implementation on the GPU, we experienced clean output 
across all grid sizes and audio buffer sizes. However, 
with the serial CPU code, there was jitter when the grid 
size was greater than 20 or the buffer size was at 4096 
samples or larger.  On the 8800GT system, we experi-
enced jitter for both parallel and serial versions, when the 
buffer size was less than 1024 samples and the grid size 
at 21 x 21.  On the 9400M system, we experienced jitter 
with both parallel and serial versions, when the buffer 
size was less than 1024 samples, or the grid size was 
greater than 17 x 17.  On all systems, responsiveness was 
difficult to evaluate objectively; to fill a buffer of 1024 
samples at 44100 Hz, would require approximately 23 
ms, which [6] identifies as the threshold for perception of 
latency. It appears that our parallel finite difference simu-
lation, running on the GTX285 system, can be the basis 
for a responsive software instrument.  

While it is difficult to compare performance on the 
three systems with different CPUs and GPUs, we set up 
some simple timing experiments to estimate the effi-
ciency of our parallel implementation. We simulated 
playing a sample for one second, and repeated this five 
times.  We used the built-in CUDA timers to measure the 
amount of time it took to calculate the samples and trans-
fer the samples from the device to the system, using 
pinned memory on systems where that is available, and 
asynchronous transfers for the system without pinned 
memory.  We made measurements for several audio out-
put buffer sizes, and several grid sizes. 
 

System 

Buffer  
Size 

(Samples) 

GPU  
Time  
(ms) 

Memory 
Transfer 

(ms) 

GPU  
Total 
(ms) 

CPU  
Time 
(ms) 

8 1626 0 1626 3060 
512 1062 0 1062 3032 GTX285 

4096 1067 0 1067 3102 
8 7251 0 7251 4052 

512 5674 0 5674 4088 9400M 
4096 2842 0 2842 4133 

8 2863 705 3568 2562 
512 2095 12 2106 2518 8800GT 

4096 2110 2 2112 2539 

Table 1.  Results for fixed 21 x 21 grid and varying out-
put buffer size. 

The results of the tests run on our three test systems, 
with a fixed grid size of 21 x 21 and varying buffer sizes, 
are summarized in Table 1. Buffer Size is the size of the 
output buffer in samples. GPU Time is the total execution 
time in milliseconds of the kernels on the GPU.  Memory 

Transfer is the total time in milliseconds to transfer the 
output buffer from the device to the host; a memory 
transfer value of 0 indicates that the device supported 
pinned memory.  CPU Time is the total execution time in 
milliseconds of the serial implementation on the CPU. 
All timings represent a total time over 5 runs of 1- second 
output each (i.e. total of 220500 samples). 
 

 

Figure 3.  Execution speed with a constant grid size of 21 
x 21 points, and varying output buffer sizes. 

As can be seen in Figure 3, performance on the CPU 
remains almost constant for all buffer sizes.  As the out-
put buffer size increases, generating the same number of 
output samples requires fewer kernel calls and memory 
transfers on the GPU; thus the overhead decreases.  For 
the GTX285 system, the performance of the parallel ver-
sion increased significantly when buffer size increased 
from 8 to 512, and stayed about constant for larger buffer 
sizes. The parallel implementation ran faster than the 
serial implementation, with speedups of 1.2 to 2.9.  The 
9400M system had the lowest performance of the three. 
The performance of the parallel implementation increased 
steadily with larger buffer sizes. For the 8800GT system 
(no pinned memory), as the buffer size increased, the  
 
 

System 

Grid 
Size 

(Points) 

GPU  
Time 
(ms) 

Memory 
Transfer 

(ms) 

GPU  
Total 
(ms) 

CPU  
Time 
(ms) 

15 x 15 924 0 924 1577 
18 x 18 984 0 984 2224 GTX285 
21 x 21 1067 0 1067 3102 
15 x 15 2222 0 2222 1984 
18 x 18 2957 0 2957 3040 9400M 
21 x 21 2842 0 2842 4133 

 15 x 15 1411 2 1413 1266 
18 x 18 1743 3 1746 1843 8800GT 
21 x 21 2110 2 2112 2539 

Table 2.  Results for a fixed buffer size of 4096 samples, 
and varying grid size. 



overhead for memory transfers decreased as a percentage 
of total execution time.  The parallel code was faster than 
the serial code only with a buffer size of 512 or greater. 

Table 2 summarizes timing estimates with a fixed 
buffer size of 4096 samples, but with varying grid sizes 
of 15 x 15, 18 x 18, and 21 x 21. (We were unable to 
work with larger grid sizes because of GPU memory 
limitations for our current implementation.) 

 

 

 Figure 4.  Execution speed with a constant buffer size 
4096-samples, and varying grid sizes.  For the GTX285, 
k=0.755; for the 9400M k=1.0; for the 8800GT k=0.629.  

As with the previous test, the parallel implementation 
was faster than the serial on the GTX285 system for all 
tested grid sizes; it can be seen Figure 4 that timings for 
the CPU show an approximate O(n2) increase with grid 
size, while GPU timings increase significantly more 
slowly.  With all grid sizes, speedup improved with larger 
grid sizes. For the 9400M system and 8800GT system, 
the parallel version was faster for grid sizes 18 and 21, 
but the serial version was faster for a grid size of 15. 

6 CONCLUSIONS AND FUTURE WORK 
Our goal for this project was to explore the ability of cur-
rent mid-range GPU cards to support real-time compute-
intensive physics-based synthesis algorithms.  We have 
shown that it is possible to use GPUs to generate real-
time audio based on finite difference plate/membrane 
simulations, but that correct choice of output buffer size 
and simulation grid size are important. Our straightfor-
ward implementation of a parallel finite difference algo-
rithm runs efficiently on our first test system with a 
GTX285; our less powerful test systems will support 
adequate performance with selected buffer and simulation 
grid sizes. 

From the results with the 8800GT system, we have 
shown that memory bandwidth is not a major issue, at 
least for problems similar to our finite difference code. 
Newer models of GPU cards that support pinned memory 
largely avoid the overhead of copying results between the 
GPU and the host CPU. Larger simulation grid sizes can 
leverage the parallelism of multiple GPU cores, if the 
data sizes do not exceed the available GPU memory size. 

The output buffer size can be increased to reduce kernel 
call and memory transfer overhead, but at the cost of re-
sponsiveness.   

Future work will focus on creating a modular produc-
tion-quality synthesis package using the GPU and finite 
difference methods, for modeling a variety of percussion 
instruments.  Some limitations of the current implementa-
tion must be addressed.  Our current version supports 
only relatively small grid sizes.  We are working on dis-
tributing the parallel kernel across multiple thread blocks, 
and using texture memory, to allow for larger or denser 
grids.  Our code is written in the proprietary CUDA ex-
tension.  We are planning on rewriting the GPU software 
in the industry-standard OpenCL language [9] and testing 
it across heterogeneous compute platforms. 
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