
Use of General Purpose Graphics Processors for Realtime Sound Synthesis
Marc Sosnick, Department of Computer Science Faculty Advisor: William Hsu, Department of Computer Science

INTRODUCTION

Powerful Graphics Processing Units (GPUs) are now common in standard
graphics cards of most desktop and laptop systems.

Many of these graphics cards support general-purpose computing using
these powerful GPUs.

Software support (CUDA [6], OpenGL [7]) now exists to utilize GPUs for
general-purpose computing.

We have been exploring the use of GPUs for realtime sound synthesis using
compute-intensive physics-based models, previously impossible in realtime
using CPUs.

Others have used physics-based models generate audio [2,3], but none have
executed in realtime.

Realtime sound synthesis using compute-intensive physics-based models
will allow the creation of new audio synthesizer instruments.

●

●

●

●

●

●

SYNTHESIS METHOD

To generate sound, we simulate the propagation of waves in 2-dimensions using
the wave equation with dissipation:

2u
x 2 +

2u
y 2 =

2u
t 2 + u

t
 (1)

We approximate this using the truncated second-order Taylor expansion [1]:

(2)=
ui ,j

n+1 2ui ,j
n + ui ,j

n 1

t 2 +
ui ,j

n+1 ui , j
n 1

2 t

 ui+1, j
n 2ui, j

n + ui 1, j
n

l 2 +
ui, j+1

n 2ui, j
n + ui, j 1

n

l 2

Since the grid is symmetric, ∆ l = ∆ x = ∆ y , and x = i ∆ x , y = j ∆ y , and t = n ∆ t [5].
Solving for :ui, j

n +1

ui ,j
n+1 = 1+ t

2[] 1 ui+1,j
n + ui 1,j

n + ui ,j+1
n + ui ,j 1

n 4ui ,j
n[]

+2ui ,j
n 1+ t

2[]ui ,j
n 1

 (3)

A sample point is chosen on this simulated membrane, much like a needle point
on a record. The sample point’s displacement is sent to the audio buffer, which
combine to create a sound wave (Figure 1).

The equation (3) is repeated as many
times as necessary by the GPU to fill
the buffer. This buffer full of samples
is then returned to the CPU, which
sends the buffer to the audio driver,
which plays the sound. To avoid jitter
(Figure 3), the time spent filling the
buffer must be less than the time to
play the buffer.

Calculate
Mesh

Add Point
to Buffer

repeat
until

buffer
full

Get Buffer
From GPU

Send Buffer
To Play

GPU

CPU

Figure 2. GPU vs CPU roles.

The membrane is put into motion with an initial offset (Figure 1, time = 0). This
is roughly analogous to striking a drum head, or plucking a string.

EXPERIMENTAL SETUP

We tested our software on
three different systems
(Table 1), equipped with mid-
range graphics cards with
GPU computing capability.

Pinned
Memory

Audio
Buffer

Sample
Point

Audio
Out

∆x ∆y

Simulated
Membrane

time = 0 time =∆ t

time =2∆ t time =3∆ t

We timed execution on the CPU and GPU with a variety of buffer sizes and grid
sizes. We timed for latency and checked for jitter, which together define
responsiveness [4].

Figure 1. How a sound is generated from a simulated vibrating membrane.

Latency: the delay in starting or stopping a
sound after a stimulus such as a key press.
To be responsive, a delay of 20 - 30 ms
is acceptable [4].

Jitter: gaps or skips in the sound, usually due
to the buffer not being filled sufficiently fast. To
be responsive, zero jitter is acceptable. [4]

System

Buffer
Size

(Samples)

GPU
Time
(ms)

Memory
Transfer

(ms)

GPU
Total
(ms)

CPU
Time
(ms)

8 1626 0 1626 3060

512 1062 0 1062 3032 GTX285

4096 1067 0 1067 3102

8 7251 0 7251 4052

512 5674 0 5674 4088 9400M

4096 2842 0 2842 4133

8 2863 705 3568 2562

512 2095 12 2106 2518 8800GT

4096 2110 2 2112 2539

System

Grid
Size

(Points)

GPU
Time
(ms)

Memory
Transfer

(ms)
GPU

Total (ms)

CPU
Time
(ms)

15 x 15 924 0 924 1577

18 x 18 984 0 984 2224 GTX285

21 x 21 1067 0 1067 3102

15 x 15 2222 0 2222 1984

18 x 18 2957 0 2957 3040 9400M

21 x 21 2842 0 2842 4133

15 x 15 1411 2 1413 1266

18 x 18 1743 3 1746 1843 8800GT

21 x 21 2110 2 2112 2539

ACKNOWLEDGEMENTS

REFERENCES
A. Adib: “Study Notes on Numerical Solutions of the Wave Equation with the Finite
Difference Method,” arXiv:physics/0009068v2 [physics.comp-ph]. 4 October 2000.
Downloaded from http://arxiv.org/abs/physics/0009068v2 on April 15, 2010.

[1]

S. Bilbao: “A finite difference scheme for plate synthesis,” Proceedings of the
International Computer Music Conference, pp. 119-122, 2005.

[2]

B. Land: “Finite difference drum/chime," Downloaded 4/15/2010 from http://instruct1.
cit.cornell.edu/courses/ece576/LABS/f2009/lab4.html.

[3]

N. P. Lago, F. Kon: “The Quest for Low Latency,” Proceedings of the International
Computer Music Conference, pp. 33-36, 2004.

[4]

Nvidia CUDA Programming Guide, version 2.3.1. 8/26/2009. Downloaded 4/21/2010
from http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/Nvidia_CUDA_
Programming_Guide_2.3.pdf.

[6]

Nvidia OpenCL Programming Guide, version 2.3. 8/27/2009. Downloaded
from http://www.nvidia.com/content/cudazone/download/OpenCL/Nvidia_OpenCL_
ProgrammingGuide.pdf

[7]

E. Motuk, R. Woods, S. Bilbao, J. McAllister: "Design Methodology for Real-Time FPGA-
Based Sound Synthesis," IEEE Transactions on Signal Processing, Vol. 55, No. 12,
pp. 5833 – 5845, 2007.

[5]

This research would not have been possible without the generous
support of William Hsu, Niki Jorgensen, Blair Whitmer, Dragutin
Petkovic, Russ Altman, Kai Kolhoff, Mike Wong, Carlo Matar, and
Marcia and Myron Sosnick.

CONCLUSIONS

FUTURE WORK

EXPERIMENTAL RESULTS

These experiments represent the first stage of our research. This is proof-of-
concept work intended to show the feasibility of this approach.

Table 3. Constant 21 x 21 point grid with
 varying buffer size.

Table 4. Constant 4096-sample buffer with
 varying grid sizes.

System
Graphics

Card
CPU

@ Clock Rate
GPU Cores

@ Clock Rate
Pinned
Memory

System
Memory

1 GTX285 Intel Core 2 Quad
@ 2.5 GHz

240 cores
@ 1.48 GHz ✓

2 9400M Intel Core Duo
@ 1.86 GHz

16 cores
@ 0.80 GHz ✓ ✓

3 8800GT Intel Quad Xeon
@ 3 GHz

112 cores
@ 1.5 GHz

 Table 1. System configurations tested

time

LATENCY

Figure 4. Latency

Jitter and latency (responsiveness) must be within acceptable limits to be able
to use the instrument in realtime.

It is possible to generate realtime audio using GPUs and finite-difference
simulations.

Larger grids better leverage GPU computing power.

Choice of buffer and grid sizes is important to responsiveness.

Memory bandwidth is not a major consideration, especially with more
advanced graphics cards.

It should be possible to create a responsive, realtime synthesizer
instrument using compute-intensive physics-based models.

●

●
●
●

●

Develop and optimize parallel algorithm to process arbitrarily large or
dense grids.

Write code in OpenCL to leverage heterogeneous computing
environments and embrace industry standards.

Package code into a modular, production-quality synthesis package.

●

●

●

Configuration

System Processor
Buffer

(samples)
Grid

(points)
 4096 * CPU

* 20 x 20 1 (GTX285)
GPU

= 4096 * CPU
 1024 * 2 (9400M)

GPU 1024 *
CPU 1024 = 21 x 21 3 (8800GT) GPU 1024 = 21 x 21

Table 2. Buffer and grid configurations which
 produced jitter (* denotes all
 configurations).

N.B. Time measurements in Tables 3 and 4 are cumulative measurements of a
 1-second sample played 5 times.

Figure 3. Jitter
time

